CSMSS

Chhatrapati Shahu Maharaj Shikshan Sanstha's

CHH. SHAHU COLLEGE OF ENGINEERING

Kanchanwadi, Paithan Road, Chh. Sambhajinagar 431 011 Ph. No.: (0240) 2646373, 9922668199, 2646350 Fax: (0240) 2646222 Website: www.csmssengg.org

Approved by AICTE New Delhi, DTE (Govt. of Maharashtra) and affiliated to Dr. BATU, Lonere (Raigad). DTE Code: 2533

	·			and assura Janu anniated to Dr. DATO, Lonere (Raigad). DTE Code: 2555
		DEPA	RTMENT (OF ELECTRICAL ENGINEERING 2022-23
SEME SUBJECT NAME OF CO STER CODE THE				COURSE OUTCOMES
			CO-1	STUDENTS WILL BE ABLE TO IDENTIFY THE TRANSFORMS OF SPECIAL FUNCTIONS SUCH AS PERIODIC FUNCTIONS, HEAVISIDE-UNIT STEP FUNCTION, AND DIRAC DELTA FUNCTION.
III	BTBS301	ENGINEERIN G MATHEMATI CS – III	CO-2	STUDENTS WILL BE ABLE TO APPLY LAPLCE & INVERSE LAPLACE TRANSFORM METHODS TO SOLVE LINEAR DIFFERENTIAL EQUATIONS AND SYSTEMS WITH CONSTANT COEFFICIENTS.
			CO-3	STUDENTS WILL BE ABLE TO APPLY FOURIER TRANSFORMS AND INTEGRAL PROPERTIES, INCLUDING SINE AND COSINE INTEGRALS AND PARSEVAL'S IDENTITY, TO TRANSFORM
			CO-4	STUDENTS WILL BE ABLE TO APPLY TECHNIQUES TO FORM AND SOLVE PARTIAL DIFFERENTIAL EQUATIONS, INCLUDING
			CO-5	STUDENTS WILL BE ABLE TO DESCRIBE HOW HARMONIC FUNCTIONS IN CARTESIAN FORM ARE DERIVED AND THEIR RELATIONSHIP WITH ANALYTIC FUNCTIONS.
			CO-6	STUDENTS WILL BE ABLE TO SOLVE THE COMPLEX FUNCTION WITH REFERENCE TO THEIR ANALYTICITY, INTEGRATION USING CAUCHY'S INTEGRAL AND RESIDUE THEOREMS
			CO-1	ACQUIRE KNOWLEDGE ABOUT THE CONSTRUCTIONAL DETAILS, PRINCIPLE OF OPERATION AND APPLICATIONS OF SINGLE PHASE & THREE PHASE TRANSFORMERS
///	BTEEC302	2111110	CO-2	LEARN TO CALCULATE LOSSES, EFFICIENCY, VOLTAGE REGULATION AND OTHER PARAMETERS OF TRANSFORMERS BY CONDUCTING DIFFERENT ROUTINE & TYPE TESTS.
		MACHIN E I	CO-3	UNDERSTAND ELECTROMAGNETIC ENERGY CONVERSION PRINCIPLES AND CLASSIFICATION OF ELECTRICAL MACHINES.
			CO-4	ACQUIRE KNOWLEDGE ABOUT THE CONSTRUCTIONAL DETAILS AND PRINCIPLE OF OPERATION OF DC MOTORS & GENERATORS.
			CO-5	ACQUIRE KNOWLEDGE OF EMF EQUATIONS, TORQUE EQUATIONS, CHARACTERISTICS & STARTING METHODS OF DIFFERENT ELECTRICAL DC MACHINES.
			CO-1	DEFINE FUNDAMNETALS OF 3-PHASE AND 1-PHASE INDUCTION MACHINES AND SYNCHRONOUS MACHINES

			CO-6	ACQUIRE KNOWLEDGE OF CONSTRUCTION DETAILS AND PRINCIPLE OF WORKING OF SPECIAL PURPOSE MACHINES SUCH AS BRUSH LESS DC MOTOR, STEPPER MOTOR, And RELUCTANCE MOTOR & VARIABLE
			CO-1	DEFINE GENERALIZED MEASUREMENT & INSTRUMENTATION SYSTEM WITH THE HELP OF A BLOCK DIAGRAM, ITS PROPERTIES AND FUNDAMENTALS.
		_	CO-2	CHOOSE THE SUITABLE METHOD FOR MEASUREMENT OF ACTIVE, REACTIVE POWERS AND ENERGY.
III	(BTEEC303	ELECTRICAL - AND ELETRONICS MEASUREME	CO-3	APPLY THE SUITABLE METHOD FOR MEASUREMENT OF RESISTANCE, INDUCTANCE AND CAPACITANCE.
	1	NT	CO-4	EXPRESS DIGITAL MEASUREMENT OF ELECTRICAL QUANTITIES WITH THE HELP OF BLOCK DIAGRAM
		_	CO-5	IDENTIFY THE TRANSDUCERS AND ITS USE FOR MEASUREMENT OF FORCE, TORQUE, VELOCITY, ACCELERATION
			CO-1	DESCRIBE BASIC CONCEPTS OF HUMAN RIGHTS.
		BASIC HUMAN RIGHT	CO-2	INTERPRET THE HISTORY OF THE DEVELOPMENT OF HUMAN RIGHTS.
III	BTHM304		CO-3	EXPLAIN THE INTERRELATIONSHIP OF SOCIETY, RELIGION AND CULTURE.
			CO-4	RELATE TO THE SOCIAL STRUCTURE AND SOCIAL PROBLEMS.
		_	CO-5	PRACTICE COLLECTIVE ACTIONS FOR THE BETTERMENT OF SOCIETY.
		_	CO-6	CORRELATE TO THE HUMAN RIGHTS CONSTIDUTED IN THE CONSTITUTION OF INDIA.
			CO-1	STUDENT WILL ABLE TO DESCRIBE THE KEY CONCEPTS OF ELECTRICAL CONDUCTION, INCLUDING CRYSTAL STRUCTURES, ATOMIC BONDING, AND FACTORS AFFECTING CONDUCTIVITY IN METALS AND OTHER
III	(BTES305)	ENGINEERING MATERIAL SCIENCE	CO-2	STUDENT WILL ABLE TO EXPLAIN THE CHARACTERISTICS AND APPLICATIONS OF DIELECTRIC MATERIALS, INCLUDING POLARIZATION TYPES, DIELECTRIC STRENGTH, AND THE EFFECTS OF TEMPERATURE
			CO-3	STUDENT WILL ABLE TO EXPLAIN KNOWLEDGE OF SEMICONDUCTOR PROPERTIES AND INTEGRATION TECHNIQUES TO ANALYZE AND SOLVE PROBLEMS RELATED TO ELECTRON-HOLE CONCENTRATION. CARRIER

			CO-4	STUDENT WILL ABLE TO ANALYZE THE PROPERTIES AND CLASSIFICATION OF MAGNETIC MATERIALS, INCLUDING
			CO-5	STUDENT WILL ABLE TO CLASSIFY THE PROPERTIES AND APPLICATIONS OF REFRACTORY, STRUCTURAL, AND RADIOACTIVE MATERIALS, AND
			CO-1	STUDENT WILL ABLE TO DESCRIBE BASIC COMPONENTS OF ELECTRIC NETWORK
	(BTEEC401	NETWORK THEORY	CO-2	STUDENT WILL ABLE TO DISCUSS NETWORK THEOREMS TO SIMPLIFY COMPLEX NETWORKS.
IV	,	IIILOKI	CO-3	STUDENT WILL ABLE TO ILLUSTRATE TRANSIENT ANALYSIS IN ELECTRICAL CIRCUITS AND ANALYZE THE POWER SYSTEM STABILITY.
			CO-4	STUDENT WILL ABLE TO SOLVE LAPLACE TRANSFORM FOR ELECTRIC NETWORK ANALYSES AND EVALUATE THE PARAMETERS OF TWO PORT NETWORKS
			CO-5	STUDENT WILL ABLE TO EXAMINE VARIOUS TYPES OF FILTERS.
	(BTEEC402	POWER	CO-1	LIST THE DIFFERENT SOURCES OF ENERGY AND IDENTIFY THE MAJOR ELECTRICAL EQUIPMENT IN GENERATING STATIONS.
IV	,	SYSTEM	CO-2	CALCULATE THE INDUCTANCE AND CAPACITANCE OF SINGLE-PHASE AND THREE-PHASE LINES.
			CO-3	CONCLUDE THE DISTRIBUTION OF VOLTAGE ACROSS THE INSULATOR STRING AND DETERMINE STRING EFFICIENCY.
			CO-4	EXPLAIN THE CLASSIFICATION AND PERFORMANCE OF TRANSMISSION LINES.
			CO-5	ILUSTRATE THE DESIGN AND PERFORMANCE OF DC DISTRIBUTION SYSTEMS, INCLUDING ALL TYPES OF DC SYSTEMS.
IV		ELECTRICAL	CO-2	COMPARE VARIOUS PARAMETERS OF AC ELECTRIC MACHINES
	(BTEEC403	MACHINE 2	CO-3	IDENTIFY AND ORGANIZE THE CHARACTERISTICS OF DIFFERENT AC ELECTRICAL MACHINES
			CO-4	DEVELOP THE CIRCUIT MODEL OF AC ELECTRICAL MACHINES
			CO-5	JUSTIFY VARIOUS AC ELECTRICAL MACHINES
			CO-6	CONSTRUCT THE CONTROL OPERATIONS AND FORMULATE VARIOUS TESTS ON ELECTRICAL MACHINES
IV	(BTBS404)	ANALOG AND DIGITAL ELECTRONICS	CO-1	STUDENT WILL ABLE TO INTERPRET DIFFERENT ELECTRONICS CIRCUITS.

			CO-2	STUDENTS WILL BE ABLE TO EXTEND KNOWLEDGE OF WORKING
				PRINCIPLES OF OP-AMP
			CO-3	STUDENTS WILL BE ABLE TO SHOW BASIC NUMBER SYSTEM.
			CO-4	STUDENTS WILL BE ABLE TO DEMONSTRATE DEIGN AND CHARACTERISTICS OF DIGITAL LOGIC GATES.
			CO-5	STUDENTS WILL BE ABLE TO S SUMMARIZE TECHNIQUES USED IN DIGITAL CIRCUITS.
			CO-6	STUDENTS WILL BE ABLE TO DEMONSTRATE USE OF DIGITAL SYSTEMS.
				CTUDENT WILL ARLE TO IDENTIFY THE RRINGING OF RENEWARD F
			CO-1	STUDENT WILL ABLE TO IDENTIFY THE PRINCIPLES OF RENEWABLE ENERGY SYSTEMS AND LIST VARIOUS ASPECTS OF ENERGY CONVERSION AND MANAGEMENT OPTIONS IN MODERN POWER
IV	(BTEEPE40	ADAVANCE RENEWABLE	CO-2	STUDENT WILL ABLE TO DIFFERENTIATE BETWEEN VARIOUS WIND ENERGY CONVERSION DEVICES, THEIR CLASSIFICATIONS, AND THE FACTORS INFLUENCING WIND ENERGY GENERATION, INCLUDING SITE
	5)	ENERGY SOURECS	CO-3	STUDENT WILL ABLE TO CALCULATE AND ANALYZE THE PERFORMANCE AND APPLICATIONS OF PHOTOVOLTAIC SYSTEMS AND SOLAR THERMAL COLLECTORS, INCLUDING THEIR ECONOMIC,
			CO-4	FNVIRONMENTAL. AND SOCIAL IMPLICATIONS. STUDENT WILL ABLE TO CATEGORIZE AND EVALUATE BIOMASS RESOURCES AND CONVERSION PROCESSES, INCLUDING THERMO- CHEMICAL, BIOCHEMICAL, AND CHEMICAL METHODS, AS WELL AS
		•	CO-5	ANALYZE THE PRINCIPLES AND OPERATION OF INDUCTION STUDENT WILL ABLE TO COMPARE ENERGY STORAGE SYSTEMS AND THEIR INTEGRATION WITH ALTERNATIVE ENERGY SOURCES, INCLUDING DIFFERENT STORAGE TECHNOLOGIES, ECONOMIC CONSIDERATIONS, AND INTERCONNECTION TECHNOLOGIES.
			CO-1	ABLE TO DEFINE THE SINGLE LINE DIAGRAM FOR THE ELECTRICAL POWER SYSTEM
V	(BTEEC501)	POWER SYSTEM ANALYSIS	CO-2	ABLE TO EXPLAIN THE SYMMETRICAL COMPONENTS IN A POWER SYSTEM

			CO-3	ABLE TO SOLVE FOR THE SYMMETRICAL & UNSYMMETRICAL FAULTS IN A POWER SYSTEM
			CO-4	ABLE TO COMPARE BETWEEN THE DIFFERENT LOAF FLOW ANALYSIS METHODS USED IN A POWER SYSTEM
			CO-5	ABLE TO DETERMINE THE SHORT CIRCUIT MVA FOR SYMMETRICAL FAULTS FOR DESIGN OF RATING OF CIRCUIT BREAKER
			CO-6	ABLE TO EVALUATE THE PER UNIT REACTANCE DIAGRAM FOR GIVEN SYSTEM
			CO-1	STUDENTS WILL BE ABLE TO EXPLAIN THE ARCHITECTURE OF 8085.
	(PTEECEO2	MICROPROCES	CO-2	STUDENTS WILL BE ABLE TO EXPLAIN INTERFACING FEATURES OF 8085.
V)	SOR AND MICROCONTRO	CO-3	STUDENTS WILL BE ABLE TO USE INTERRUPT FEATURES OF 8085.
		LLER	CO-4	STUDENTS WILL BE ABLE TO EXPRESS PROGRAM FOR BASIC APPLICATIONS.
			CO-5	STUDENTS WILL BE ABLE TO EXPLAIN THE ARCHITECTURE AND INTERFACING ALSO INTERRUPT FEATURES OF 8051.
			CO-1	STUDENTS WILL BE ABLE TO LIST THE CHARACTERISTICS AND OPERATIONS OF POWER SEMICONDUCTOR DEVICES.
V	(BTEEC503	POWER ELECTRONICS	CO-2	STUDENTS WILL BE ABLE TO DESCRIBE THE TURN-ON AND TURN-OFF MECHANISMS FOR POWER SEMICONDUCTOR DEVICES.
		-	CO-3	STUDENTS WILL BE ABLE TO EXPLAIN THE CONCEPT OF PHASE- CONTROLLED RECTIFICATION AND ITS IMPACT ON POWER FACTOR.
			CO-4	STUDENTS WILL BE ABLE TO DESCRIBE THE OPERATION OF SINGLE- PHASE AND THREE-PHASE CYCLOCONVERTERS.
	(BTEEPLE5 04)	POWER QUALITY	CO-1	DEFINE DIFFERENT TYPES OF POWER QUALITY ISSUES
V		ISSUES	CO-2	EXPLAIN TRANSIENT OVER VOLTAGE, DEVICES FOR OVER VOLTAGE PROTECTION
V				

			CO-3	EXPLAIN SOURCES OF HARMONICS, EFFECTS OF HARMONICS
			203	DISTORTION, STANDARDS OF HARMONICS
			CO-4	EXPLAIN DEVICES FOR VOLTAGE REGULATION, UTILITY VOLTAGE RGULATION APPLICATION
			CO-5	EXPLAIN POWER QUALITY MEASURING INSTRUMENTS AND EQUIPMENTS
			CO-1	IDENTIFY AND UTILIZE APPROPRIATE SAFETY EQUIPMENT FOR MITIGATING PRIMARY AND SECONDARY ELECTRICAL HAZARDS.
			CO-2	DEMONSTRATE THE CORRECT GROUNDING AND BONDING TECHNIQUES FOR DIFFERENT ELECTRICAL SYSTEMS AND APPLY SAFETY METHODS FOR HIGH-VOLTAGE OPERATIONS.
V	(BTEEOE5 05)	ELCTRICAL SAFTY	CO-3	DEVELOP AND IMPLEMENT AN EFFECTIVE ELECTRICAL SAFETY PROGRAM, INCLUDING ACCIDENT PREVENTION, SAFETY MEETINGS, AND INVESTIGATION PROTOCOLS.
			CO-4	ADMINISTER RELIABILITY-CENTERED MAINTENANCE PRINCIPLES TO DEVELOP MAINTENANCE SCHEDULES AND REQUIREMENTS FOR ELECTRICAL EQUIPMENT.
			CO-5	INTERPRET AND RELATE ELECTRICAL SAFETY STANDARDS AND REGULATIONS WITH VARIOUS REGULATORY BODIES TO ENSURE COMPLIANCE IN ELECTRICAL PRACTICES.
			CO-1	Understand the necessity of power system protection, including fault effects, relay requirements, and types of protective devices.
		-	CO-2	Describe various static and numerical relays, including their
VI	(BTFFC601	SWITCHGEAR		operating principles and applications in fault detection and
V1)	AND	CO-3	recording Explain the function and characteristics of different types of circuit
		PROTECTION	CO-3	breakers and fuses, including their selection and testing methods.
			CO-4	Analyze the protection schemes for transmission lines, including
		<u> </u>	CO-5	overcurrent and distance protection methods Evaluate the differential protection strategies for alternators and
				transformers, including the challenges and standards associated with
			CO-1	TO RECALL THE CONCEPT AND ABILITY TO ANALYZE THE MAGNETIC MATERIALS AND MAGNETIC CIRCUITS IN ELECTRICAL MACHINES
VI	(BTEEC602	ELECTRICAL MACHINE	CO2	TO IDENTIFY AND DESIGN THE DIFFERENT TYPES OF WINDING
		DESIGN -	CO-3	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR STATOR

			CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR ROTOR
			CO-5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF HEATING, COOLING, VENTILATION
			CO-1	COMPUTE TRANSFER FUNCTION OF LINEAR TIME INVARIANT SYSTEMS
VI	(BTEEC603	CONTROL SYSTEM	CO-2	DESCRIBE OPERATION OF VARIOUS CONTROL SYSTEM COMPONENTS
	,	ENGINEERING	CO-3	ANALYZE AND EVALUATE LINEAR SYSTEMS IN TIME DOMAIN
			CO-4	ANALYZE AND EVALUATE OF LINEAR TIME INVARIANT SYSTEMS IN FREQUENCY DOMAIN
			CO-5	EXPLAIN VARIOUS INDUSTRIAL CONTROLLERS
			CO-1	DISCUSS THE FEATURES OF SMART GRID & CONCEPT OF SMART METERING
VI	(BTEEPE60 4)	SMART GRID TECHNOLOGY	CO-2	DESCRIBE THE ARCHITECTURE OF SMART GRID & ITS COMPUTATIONAL TECHNIQUES.
			CO-3	MODEL AND CONSTRUCT SMART GRID WITH RENEWABLE ENERGY SOURCES.
			CO-4	EXPLAIN MODERN COMMUNICATION TECHNOLOGIES USED IN SMART GRID.
			CO-5	FORMULATE SOLUTIONS FOR CONTROLLING AND SECURITY OF SMART GRID.
	(BTEEOE6	POWER PLANT	CO-1	DESCRIBE CONVENTIONAL AND ALTERNATIVE ENERGY SOURCES, INCLUDING THEIR FUNCTIONS, CONTROL SYSTEMS, AND ECONOMIC CONSIDERATIONS IN POWER SYSTEMS.
VI	05)	ENGINEERING	CO-2	COMPARE THE ELEMENTS AND OPERATIONAL CIRCUITS OF THERMAL STEAM AND HYDRO POWER PLANTS, INCLUDING SITE SELECTION,
			CO-3	EXPLAIN & EXAMINE THE SELECTION OF SITE AND OPERATION OF NUCLEAR REACTORS, INCLUDING THE FISSION PROCESS, POWER PLANT LAYOUT, AND COMPONENTS, AS WELL AS THE ADVANTAGES

			CO-4	CATEGORIZE DIFFERENT METHODS OF POWER GENERATION,
			20 1	INCLUDING SOLAR, WIND, TIDAL, BIOMASS, GEOTHERMAL, MAGNETO-HYDRO DYNAMIC, MICRO-HYDEL, AND FUEL CELLS.
			CO-5	DESIGN AND INTEGRATE PLANT SELECTION CRITERIA, GENERATOR SIZING, PARALLEL OPERATION, AND GRID MANAGEMENT, WHILE ADDRESSING ECONOMIC CONSIDERATIONS AND MAJOR ELECTRICAL
			CO-1	DISCUSS THE NEED OF RAECTIVE POWER CORRECTION AND VOLTAGE DROP COMPENSATION AND IDENTIFY THE BEST METHODS FOR POWER FACTOR IMPROVEMENT AND VOLTAGE CONTROL
VII	(BTEEC70 1)	POWER	CO-2	DEFINE POWER SYSTEM STABILITY WITH ITS APPLIACATIONS AND PROBLEM
		SYSTEM OPERATION AND CONTROL	CO-3	EVALUATE THE MATHEMATICAL MODELS OF THE SPEED GOVERNING SYSTEMS, TURBINE AND EXCITATION SYSTEM
			CO-4	DISCRIBE SINGLE AREA LOAD FREQUENCY CONTROL AND TWO AREA LOAD FREQUENCY CONTROL.
			CO-5	DISCUSS THE ECONOMIC OPERATION OF POWER SYSTEM AND IMPORTANCE
			CO-1	ILLUSTRATE THE IMPORTANT CONCEPT OF HIGH VOLTAGE
			CO-2	EXPLAIN THE BREAKDOWN PROCESS IN SOLID, LIQUID, AND GASEOUS MATERIALS
VII	(BTEEC702)	HIGH VOLTAGE ENGINEERING	CO-3	DETERMINE METHODS FOR GENERATION AND MEASUREMENT OF HIGH VOLTAGES AND CURRENTS (BOTH AC AND DC)
			CO-4	DESCRIBE THE PHENOMENON OF OVER-VOLTAGE AND CHOOSE APPROPRIATE INSULATION COORDINATION LEVELS BASED ON IS & IEC STANDARDS.
			CO-5	DISCOVER THE PERSPECTIVES LAYOUT OF HIGH VOLTAGE LABORATORY & TESTING FACILITIES.
			CO-1	TO RECALL THE CONCEPT AND ABILITY TO ANALYZE THE ELECTRIC AND MAGNETIC MATERIALS AND MAGNETIC CIRCUITS IN ELECTRICAL MACHINES
VII	(BTEEC703)	ELECTICAL DRIVE	CO-2	TO CLASSIFY THE DIFFERENT COMPONENTS OF ELECTRIC MACHINE

			CO-3	TO IDENTIFY AND DESIGN THE DIFFERENT TYPES OF WINDING
			CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF DC MOTOR
			CO5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF TRANSFORMER
			CO-1	TO RECALL THE KNOWLEDGE ABOUT THE ELECTRIC TRACTION SYSTEM .
VII	(BTEEE704)	ELECTRICAL TRACTION AND UTILIZATION	CO-2	TO CLASSIFY THE TRACK ELECTRIFICATION
			CO-3	TO IDENTIFY THE CONSTRUCTIONAL FEATURES OF TRACTION MOTORS
			CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF DC MOTOR
			CO-5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF TRACTION CONTROLS
			CO-1	EXPLAIN DIFFERENT ENERGY SOURCES AND IMPORTANCE OF ENERGY CONSERVATION, GLOBAL ARMING AND EFFECTS OF GLOBAL ARMING
		-	CO-2	EXPLAIN DIFFERENT EFFORTS FOR ENERGY CONSERVATION , AND MECHANISM FOR REDUCTION OF CARBON EMMISSION
VII	(BTEEE705	ENERGY AUDIT AND CONSERVATIO	CO-3	EXPLAIN ENERGY CONSERVATION OPORTUNITIES IN BIOLER, BIOLER EFFICIENCY CALCULATION
		N	CO-4	EXPLAIN ENERGY CONSERVATION OPORTUNITIES 5N ELECTRICAL APPLIANCES AND SYSTEM
			CO-5	DESCRIBE NETROK ANALYSIS IN MANAGEMENT, CALCULATION
VIII	(BTEEO80	INTRODUCTION TO INDUSTRY	CO-1	STUDENT WILL ABLE TO DEFINE THE BASICS OF NETWORKING AND SECURITY.
V 111		4.0 AND IOT	CO-2	STUDENT WILL ABLE TO TO DESCRIBE PREDECESSOR OF IOT TECHNOLOGY AND EMERGENCE OFINTERNET OF THINGS

			CO-3	STUDENT WILL ABLE TO EXPLAIN ARCHITECTURE FOR INTERNET OF THINGS
			CO-4	STUDENT WILL ABLE TO ILLUSTRATE VARIOUS DEVICES, SENSORS, ACTUATORS, AND VARIOUS PROCESSING PARADIGMS FOR IOT.
			CO-5	STUDENT WILL ABLE TO USE INDUSTRIAL INTERNET OF THINGS (IIOT) AS AN APPLICATION OF IOT IN INDUSTRIES
			CO-1	IDENTIFY AND EVALUATE THE ESSENTIAL QUALITIES REQUIRED FOR ENTREPRENEURIAL SUCCESS, INCLUDING RESILIENCE, INNOVATION, AND LEADERSHIP.
			CO-2	DEVELOP STRATEGIES FOR TEAM MANAGEMENT AND MAINTAINING A POSITIVE TEAM CULTURE IN THE EARLY STAGES.
VIII	(BTEEO80 2G)	ENETREPRENA URSHIP ESSENTIALS	CO-3	REVIEW HOW TO ASSESS THE FINANCIAL POSITION OF A COMPANY AT A SPECIFIC POINT IN TIME.
			CO-4	LLUSTRATE ADVANCED INNOVATION STRATEGIES, FOCUSING ON DESIGN-DRIVEN AND SYSTEMS THINKING APPROACHES.
			CO-5	EXPLAIN THE SUPPORT SYSTEMS AVAILABLE TO STARTUPS THROUGH INCUBATION AND ACCELERATION PROGRAMS.

Practical

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL406	Network Theory	CO-1	Use Kirchhoff's current and voltage laws to analyze and solve electrical circuits in a laboratory setting.
			CO-2	Apply the superposition theorem to determine the response of linear circuits with multiple sources.
			CO-3	Determine the Thevenin equivalent circuit for a given complex network to simplify circuit analysis.
			CO-4	Determine the Norton equivalent circuit for a given complex network to simplify circuit analysis.
			CO-5	Apply the Maximum Power Transfer theorem to find the load resistance that maximizes power delivery in a circuit.
			CO-6	Use the Reciprocity theorem to validate circuit properties and relationships in different configurations.
			CO-7	Analyze the resonance frequency and impedance characteristics of an RLC series circuit.

	CC	behavior a	
--	----	------------	--

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
VI	(BTEEC602)	ELECTRICAL MACHINE DESIGN	CO-1	TO RECALL THE CONCEPT AND ABILITY TO ANALYZE THE MAGNETIC MATERIALS AND MAGNETIC CIRCUITS IN ELECTRICAL MACHINES
			CO2	TO IDENTIFY AND DESIGN THE DIFFERENT TYPES OF WINDING
			CO-3	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR STATOR
			CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR ROTOR
			CO-5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF HEATING, COOLING, VENTILATION

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL407	Power system		Explain various aspects
			CO-1	of design considerations
			CO-1	of different types of
				power plant.
				Describe various
			CO-2	insulators & conductors
				with various
				components used in
				transmission and
				distribution system.
				Discover various
			CO-3	equipment's used in
				substation.
				Student can determine
			CO-4	different parameter
				used in cable.
				Student can do survey
			CO-5	on industrial visit and
				write report in details.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
III	BTEEL307	Electrical Electronics and Measurement	CO-1	Use AC bridges for the measurement of inductance, capacitance and frequency.
			CO-2	Identify different measuring instruments for the measurement of various electrical and non-electrical parameters.
			CO-3	use of various transducers for the measurement of physical quantities like temperature, pressure, distance and displacement.
			CO-4	Demonstrate the characteristics of Solar panel and earth

		resistance.
		Analyze the errors
	CO-5	present in measuring
	CO-3	instruments and calibrate
		them.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL408	Electrical Machine II	CO-1	Explain the different Starting and speed control methods of 3- Phase Induction Motor.
			CO-2	Analyze the performance of 3-Phase Induction Motor Perform by conducting no-load and blocked rotor test
			CO-3	Formulate equivalent circuit parameters of an alternator and also its voltage regulation by different methods
			CO-4	Evaluate the synchronization of an alternator to infinite bus and control load sharing
			CO-5	Analyze the behavior of Synchronous motor at different loading conditions using V and inverted V curve.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL408	Electrical Machine II	CO-1	Explain the different Starting and speed control methods of 3- Phase Induction Motor.
			CO-2	Analyze the performance of 3-Phase Induction Motor Perform by conducting no-load and blocked rotor test
			CO-3	Formulate equivalent circuit parameters of an alternator and also its voltage regulation by different methods
			CO-4	Evaluate the synchronization of an alternator to infinite bus and control load sharing
			CO-5	Analyze the behavior of Synchronous motor at different loading conditions using V and inverted V curve.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL408	Electrical Machine II	CO-1	Students will be able to able to identify fault current under the symmetrical and unsymmetrical faults conditions Students will be able to
				analyse power system studies by MATLAB

	CO-3	Students will be able to develop the Y-Bus Matrix

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
V	BTEEL606	SWITCHGEAR AND PROTECTION LAB	CO-1	Verify and analyze the characteristics of static overcurrent and overvoltage relays, including IDMT and reverse power relays.
			CO-2	Demonstrate the operational principles of differential protection schemes for transformers, including their schematic diagrams.
			CO-3	Demonstrate the operational principles of differential protection schemes for alternators, including their schematic diagrams.
			CO-4	Identify and describe the components and specifications of various types of circuit breakers through practical demonstrations and models.