

CSMSS

Chhatrapati Shahu Maharaj Shikshan Sanstha's

CHH. SHAHU COLLEGE OF ENGINEERING

Kanchanwadi, Paithan Road, Chh. Sambhajinagar 431 011 Ph. No.: (0240) 2646373, 9922668199, 2646350 Fax: (0240) 2646222 Website: www.csmssengg.org

Approved by AICTE New Delhi, DTE (Govt. of Maharashtra) and affiliated to Dr. BATU, Lonere (Raigad). DTE Code: 2533

	DEPARTMENT OF ELECTRICAL ENGINEERING 2023-24						
SEME STER	SUBJECT CODE	NAME OF THE	CO	COURSE OUTCOMES			
			CO-1	STUDENTS WILL BE ABLE TO IDENTIFY THE TRANSFORMS OF SPECIAL FUNCTIONS SUCH AS PERIODIC FUNCTIONS, HEAVISIDE-UNIT STEP FUNCTION, AND DIRAC DELTA FUNCTION.			
III	BTBS301	ENGINEERIN G MATHEMATI CS – III	CO-2	STUDENTS WILL BE ABLE TO APPLY LAPLCE & INVERSE LAPLACE TRANSFORM METHODS TO SOLVE LINEAR DIFFERENTIAL EQUATIONS AND SYSTEMS WITH CONSTANT COEFFICIENTS.			
			CO-3	STUDENTS WILL BE ABLE TO APPLY FOURIER TRANSFORMS AND INTEGRAL PROPERTIES, INCLUDING SINE AND COSINE INTEGRALS AND PARSEVAL'S IDENTITY, TO TRANSFORM			
			CO-4	STUDENTS WILL BE ABLE TO APPLY TECHNIQUES TO FORM AND SOLVE PARTIAL DIFFERENTIAL EQUATIONS, INCLUDING LINEAR EQUATIONS AND SEPARATION OF VARIABLES FOR HEAT FLOW ANALYSIS.			
			CO-5	STUDENTS WILL BE ABLE TO DESCRIBE HOW HARMONIC FUNCTIONS IN CARTESIAN FORM ARE DERIVED AND THEIR RELATIONSHIP WITH ANALYTIC FUNCTIONS.			
			CO-6	STUDENTS WILL BE ABLE TO SOLVE THE COMPLEX FUNCTION WITH REFERENCE TO THEIR ANALYTICITY, INTEGRATION USING CAUCHY'S INTEGRAL AND RESIDUE THEOREMS			
			CO-1	ACQUIRE KNOWLEDGE ABOUT THE CONSTRUCTIONAL DETAILS, PRINCIPLE OF OPERATION AND APPLICATIONS OF SINGLE PHASE & THREE PHASE TRANSFORMERS			
III	BTEEC302	ENGINE ERING MACHIN	CO-2	LEARN TO CALCULATE LOSSES, EFFICIENCY, VOLTAGE REGULATION AND OTHER PARAMETERS OF TRANSFORMERS BY CONDUCTING DIFFERENT ROUTINE & TYPE TESTS.			
		EI	CO-3	UNDERSTAND ELECTROMAGNETIC ENERGY CONVERSION PRINCIPLES AND CLASSIFICATION OF ELECTRICAL MACHINES.			
			CO-4	ACQUIRE KNOWLEDGE ABOUT THE CONSTRUCTIONAL DETAILS AND PRINCIPLE OF OPERATION OF DC MOTORS & GENERATORS.			
			CO-5	ACQUIRE KNOWLEDGE OF EMF EQUATIONS, TORQUE EQUATIONS, CHARACTERISTICS & STARTING METHODS OF DIFFERENT ELECTRICAL DC MACHINES.			

		[CO-6	ACQUIRE KNOWLEDGE OF CONSTRUCTION DETAILS AND PRINCIPLE OF
				WORKING OF SPECIAL PURPOSE MACHINES SUCH AS BRUSH LESS DC MOTOR, STEPPER MOTOR, RELUCTANCE MOTOR & VARIABLE RELUCTANCE MOTOR
			CO-1	DEFINE GENERALIZED MEASUREMENT & INSTRUMENTATION SYSTEM WITH THE HELP OF A BLOCK DIAGRAM, ITS PROPERTIES AND FUNDAMENTALS.
		-	CO-2	CHOOSE THE SUITABLE METHOD FOR MEASUREMENT OF ACTIVE, REACTIVE POWERS AND ENERGY.
III	(BTEEC303	ELETRONICS	CO-3	APPLY THE SUITABLE METHOD FOR MEASUREMENT OF RESISTANCE, INDUCTANCE AND CAPACITANCE.
)	AND ELECTRICAL MEASUREME NT	CO-4	EXPRESS DIGITAL MEASUREMENT OF ELECTRICAL QUANTITIES WITH THE HELP OF BLOCK DIAGRAM
			CO-5	DENTIFY THE TRANSDUCERS AND ITS USE FOR MEASUREMENT OF FORCE, TORQUE, VELOCITY, ACCELERATION
			CO-1	DESCRIBE BASIC CONCEPTS OF HUMAN RIGHTS.
		BASIC	CO-2	INTERPRET THE HISTORY OF THE DEVELOPMENT OF HUMAN RIGHTS.
III	BTHM304	HUMAN RIGHT	CO-3	EXPLAIN THE INTERRELATIONSHIP OF SOCIETY, RELIGION AND CULTURE.
		-	CO-4	RELATE TO THE SOCIAL STRUCTURE AND SOCIAL PROBLEMS.
		-	CO-5	PRACTICE COLLECTIVE ACTIONS FOR THE BETTERMENT OF SOCIETY.
		_	CO-6	CORRELATE TO THE HUMAN RIGHTS CONSTIDTUTED IN THE CONSTITUTION OF INDIA.
		ENGINEERING	CO-1	STUDENT WILL ABLE TO DESCRIBE THE KEY CONCEPTS OF ELECTRICAL CONDUCTION, INCLUDING CRYSTAL STRUCTURES, ATOMIC BONDING, AND FACTORS AFFECTING CONDUCTIVITY IN METALS AND OTHER MATERIALS
III	(BTES305)		CO-2	STUDENT WILL ABLE TO EXPLAIN THE CHARACTERISTICS AND APPLICATIONS OF DIELECTRIC MATERIALS, INCLUDING POLARIZATION TYPES, DIELECTRIC STRENGTH, AND THE EFFECTS OF TEMPERATURE AND FREQUENCY ON DIELECTRIC PROPERTIES.
			CO-3	STUDENT WILL ABLE TO EXPLAIN KNOWLEDGE OF SEMICONDUCTOR PROPERTIES AND INTEGRATION TECHNIQUES TO ANALYZE AND SOLVE PROBLEMS RELATED TO ELECTRON-HOLE CONCENTRATION. CARRIER

			CO-4	STUDENT WILL ABLE TO ANALYZE THE PROPERTIES AND CLASSIFICATION OF MAGNETIC MATERIALS, INCLUDING
		-	CO-5	STUDENT WILL ABLE TO CLASSIFY THE PROPERTIES AND APPLICATIONS OF REFRACTORY, STRUCTURAL, AND RADIOACTIVE MATERIALS, AND
			CO-1	REVIEW BASIC COMPONENTS OF ELECTRIC NETWORK
	(BTEEC401	NETWORK	CO-2	DISCUSS NETWORK THEOREMS TO SIMPLIFY COMPLEX NETWORKS.
IV)	THEORY	CO-3	ILLUSTRATE TRANSIENT ANALYSIS IN ELECTRICAL CIRCUITS AND
		-	CO-4	ANALYZE THE POWER SYSTEM STABILITY. OPERATE LAPLACE TRANSFORM FOR ELECTRIC NETWORK ANALYSES AND EVALUATE THE PARAMETERS OF TWO PORT NETWORKS
		-	CO-5	EXAMINE VARIOUS TYPES OF FILTERS.
	(BTEEC402	POWER	CO-1	LIST THE DIFFERENT SOURCES OF ENERGY AND IDENTIFY THE MAJOR ELECTRICAL EQUIPMENT IN GENERATING STATIONS.
IV)	SYSTEM	CO-2	CALCULATE THE INDUCTANCE AND CAPACITANCE OF SINGLE-PHASE AND THREE-PHASE LINES.
			CO-3	CONCLUDE THE DISTRIBUTION OF VOLTAGE ACROSS THE INSULATOR STRING AND DETERMINE STRING EFFICIENCY.
		-	CO-4	EXPLAIN THE CLASSIFICATION AND PERFORMANCE OF TRANSMISSION LINES.
		-	CO-5	ILUSTRATE THE DESIGN AND PERFORMANCE OF DC DISTRIBUTION SYSTEMS, INCLUDING ALL TYPES OF DC SYSTEMS.
	IV	ELECTRICAL	CO-1	DEFINE FUNDAMETAL OF 3-PHASE AND 1-PHASE INDUCTION MACHINES AND SYNCHRONOUS MACHINES.
		MACHINE 2	CO-2	COMPARE VARIOUS PARAMETERS OF AC ELECTRIC MACHINES
		-	CO-3	IDENTIFY AND ORGANIZE THE CHARACTERISTICS OF DIFFERENT AC ELECTRICAL MACHINES
			CO-4	DEVELOP THE CIRCUIT MODEL OF AC ELECTRICAL MACHINES
			CO-5	JUSTIFY VARIOUS AC ELECTRICAL MACHINES
			CO6	CONSTRUCT THE CONTROL OPERATIONS AND FORMULATE VARIOUS TESTS ON ELECTRICAL MACHINES
			CO-1	STUDENT WILL ABLE TO INTERPRET DIFFERENT ELECTRONICS CIRCUITS.

	ANALOG AND	CO-2	STUDENTS WILL BE ABLE TO EXTEND KNOWLEDGE OF WORKING PRINCIPLES OF OP-AMP
	DIGITAL ELECTRONICS	CO-3	STUDENTS WILL BE ABLE TO SHOW BASIC NUMBER SYSTEM.
		CO-4	STUDENTS WILL BE ABLE TO DEMONSTRATE DEIGN AND CHARACTERISTICS OF DIGITAL LOGIC GATES.
		CO-5	STUDENTS WILL BE ABLE TO S SUMMARIZE TECHNIQUES USED IN DIGITAL CIRCUITS.
		CO-6	STUDENTS WILL BE ABLE TO DEMONSTRATE USE OF DIGITAL SYSTEMS.
	ENGINEERING	CO-1	STUDENT WIIL BE ABLE TO DESCRIBE THE KEY CONCEPTS OF ELECTRICAL CONDUCTION, INCLUDING CRYSTAL STRUCTURES, ATOMIC BONDING AND FACTORS AFFECTING CONDUCTIVITY IN METALS AND OTHER.
IV	MATERIAL SCIENCE	CO-2	STUDENT WIIL ABLE TO EXPLAIN THE CHARATERITICS AND APPLICATIONS OF DIELECTRIC MATERIALS, INCLUDING POLARITIRES TYPES, DIELECTRIC STRENGHT, AND THE EFFECTS OF TEMPERATURE AND FREQUENCY ON DIELECTRIC PROPERTIES.
		CO-3	STUDENT WIIL ABLE TO APPLY KNOWLEDGE PF SEMICONDUCTOR PROPERTIES AND INTEGRATION TECHNIQUES TO ANALYES AND SOLVE PROBLEMS RELATED TO ELECTRON-HOLE CONCENTRATION, CARRIER MOBILITY, AND APPLICATION IN ELECTRONICS.
		CO-4	STUDENT WIIL ABLE TO ANALYZE THE PROPERTIES AND CLASSIFICATION OF MAGNETIC MATERIALS, INCLUDING FERROMAGNETIISM, MAGNNETOSTRICTION, AND THE FACTORS AFFECTING PERMABILITY AND HYTERISIS IN VARIOUS APPLICATIONS.
		CO-5	STUDENT WIIL ABLE TO SUMMERIZE THE PROPERTIES AND APPLICATIONS OF REFRACTORY, STRUCTURAL, AND RADIOACTIVE MATERIALS, AND ASSESS THE EFFECTIVENESS OF NON-DESRTUCTIVE TESTING TECHNIQUES LIKE ULTRASONIC RADIOGRAPHY AND X-RAY DIFFRATION.
		CO-1	STUDENT WILL BE ABLE TO DEFINE THE SINGLE LINE DIAGRAM FOR THE ELECTRICAL POWER SYSTEM
	POWER	CO-2	STUDENT WILL BE ABLE TO EXPLAIN THE SYMMETRICAL COMPONENTS IN A POWER SYSTEM
V	SYSTEM	CO-3	STUDENT WILL BE ABLE TO SOLVE FOR THE SYMMETRICAL & UNSYMMETRICAL FAULTS IN A POWER SYSTEM
		CO-4	STUDENT WILL BE ABLE TO COMPARE BETWEEN THE DIFFERENT LOAF FLOW ANALYSIS METHODS USED IN A POWER SYSTEM

		CO-5	STUDENT WILL BE ABLE TO DETERMINE THE SHORT CIRCUIT MVA FOR SYMMETRICAL FAULTS FOR DESIGN OF RATING OF CIRCUIT BREAKER.
		CO-6	STUDENT WILL BE ABLE TO EVALUATE THE PER UNIT REACTANCE DIAGRAM FOR GIVEN SYSTEM.
		CO-1	STUDENTS WILL BE ABLE TO EXPLAIN THE ARCHITECTURE OF 8085.
	_	CO-2	STUDENTS WILL BE ABLE TO EXPLAIN INTERFACING FEATURES OF 808
V	MICROPROCES	CO-3	STUDENTS WILL BE ABLE TO USE INTERRUPT FEATURES OF 8085.
v	SOR AND MICROCONTR OLLER	CO-4	STUDENTS WILL BE ABLE TO EXPRESS PROGRAM FOR BASIC APPLICATIONS.
		CO-5	STUDENTS WILL BE ABLE TO EXPLAIN THE ARCHITECTURE AND INTERFACING ALSO INTERRUPT FEATURES OF 8051.
		CO-1	STUDENTS WILL BE ABLE TO LIST THE CHARACTERISTICS AND OPERATIONS OF POWER SEMICONDUCTOR DEVICES.
V	POWER	CO-2	STUDENTS WILL BE ABLE TO DESCRIBE THE TURN-ON AND TURN-OFF MECHANISMS FOR POWER SEMICONDUCTOR DEVICES.
CO-3 STUDENTS CONTROLLI	STUDENTS WILL BE ABLE TO EXPLAIN THE CONCEPT OF PHASE- CONTROLLED RECTIFICATION AND ITS IMPACT ON POWER FACTOR.		
		CO-4	STUDENTS WILL BE ABLE TO DESCRIBE THE OPERATION OF SINGLE- PHASE AND THREE-PHASE CYCLOCONVERTERS.
	POWER QUALITY	CO-1	STUDENTS WILL BE ABLE TO DEFINE DIFFERENT TYPES OF POWER QUALITY ISSUES
	ISSUES	CO-2	STUDENTS WILL BE ABLE TO EXPLAIN TRANSIENT OVER VOLTAGE, DEVICES FOR OVER VOLTAGE PROTECTION.
V		CO-3	STUDENTS WILL BE ABLE TO EXPLAIN SOURCES OF HARMONICS, EFFECTS OF HARMONICS DISTORTION, AND STANDARDS OF
		CO-4	STUDENTS WILL BE ABLE TO EXPLAIN DEVICES FOR VOLTAGE REGULATION, UTILITY VOLTAGE RGULATION APPLICATION.
	-	CO-5	STUDENTS WILL BE ABLE TO EXPLAIN POWER QUALITY MEASURING INSTRUMENTS AND EQUIPMENTS.
		CO-1	STUDENTS WILL BE ABLE TO IDENTIFY AND UTILIZE APPROPRIATE SAFETY EQUIPMENT FOR MITIGATING PRIMARY AND SECONDARY
		CO-2	STUDENTS WILL BE ABLE TO DEMONSTRATE THE CORRECT GROUNDING AND BONDING TECHNIQUES FOR DIFFERENT ELECTRICA SYSTEMS AND APPLY SAFETY METHODS FOR HIGH-VOLTAGE
V	ELCTRICAL SAFTY	CO-3	STUDENTS WILL BE ABLE TO DEVELOP AND IMPLEMENT AN EFFECTIVE ELECTRICAL SAFETY PROGRAM, INCLUDING ACCIDENT PREVENTION, SAFETY MEETINGS, AND INVESTIGATION PROTOCOLS.

		CO-4	ADMINISTER RELIABILITY-CENTERED MAINTENANCE PRINCIPLES TO DEVELOP MAINTENANCE SCHEDULES AND REQUIREMENTS FOR ELECTRICAL EQUIPMENT.
		CO-5	INTERPRET AND RELATE ELECTRICAL SAFETY STANDARDS AND REGULATIONS WITH VARIOUS REGULATORY BODIES TO ENSURE COMPLIANCE IN ELECTRICAL PRACTICES.
		CO-1	Understand the necessity of power system protection, including fault effects, relay requirements, and types of protective devices.
VI	SWITCHGEAR	CO-2	Describe various static and numerical relays, including their operating principles and applications in fault detection and recording.
	AND PROTECTION	CO-3	Explain the function and characteristics of different types of circuit breakers and fuses, including their selection and testing methods.
		CO-4	Analyze the protection schemes for transmission lines, including overcurrent and distance protection methods.
		CO-5	Evaluate the differential protection strategies for alternators and transformers, including the challenges and standards associated with these systems.
		CO-1	TO RECALL THE CONCEPT AND ABILITY TO ANALYZE THE MAGNETIC MATERIALS AND MAGNETIC CIRCUITS IN ELECTRICAL MACHINES.
	ELECTRICAL	CO2	TO IDENTIFY AND DESIGN THE DIFFERENT TYPES OF WINDING.
VI	MACHINE DESIGN	CO-3	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR STATOR.
	_	CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR ROTOR
		CO-5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF HEATING, COOLING, VENTILATION.
		CO-1	COMPUTE TRANSFER FUNCTION OF LINEAR TIME INVARIANT SYSTEMS
		CO-2	DESCRIBE OPERATION OF VARIOUS CONTROL SYSTEM COMPONENTS.
VI	CONTROL	CO-3	ANALYZE AND EVALUATE LINEAR SYSTEMS IN TIME DOMAIN.
	SYSTEM ENGINEERING	CO-4	ANALYZE AND EVALUATE OF LINEAR TIME INVARIANT SYSTEMS IN FREQUENCY DOMAIN.
		CO-5	EXPLAIN VARIOUS INDUSTRIAL CONTROLLERS
		CO-1	Student will be able to explain the features of smart grid and concepts of smart metering

VI	SMART GRID TECHNOLOGY	CO-2	Student will be able to describe the architecture of smart gird and its computational techniques.
		CO-3	Student will be able to model and construct smart grid with renewable energy sources.
		CO-4	Student will be able to construct modern communication technologies used in smart grid
		CO-5	Student will be able to formulate solutions for controlling and security of smart grid
		CO-1	DESCRIBE CONVENTIONAL AND ALTERNATIVE ENERGY SOURCES, INCLUDING THEIR FUNCTIONS, CONTROL SYSTEMS, AND ECONOMIC
	POWER PLANT ENGINEERING	CO-2	COMPARE THE ELEMENTS AND OPERATIONAL CIRCUITS OF THERMAL STEAM AND HYDRO POWER PLANTS, INCLUDING SITE SELECTION,
VI		CO-3	EXPLAIN & EXAMINE THE SELECTION OF SITE AND OPERATION OF NUCLEAR REACTORS, INCLUDING THE FISSION PROCESS, POWER PLANT LAYOUT, AND COMPONENTS, AS WELL AS THE ADVANTAGES
		CO-4	CATEGORIZE DIFFERENT METHODS OF POWER GENERATION, INCLUDING SOLAR, WIND, TIDAL, BIOMASS, GEOTHERMAL, MAGNETO- HYDRO DYNAMIC, MICRO-HYDEL, AND FUEL CELLS.
		CO-5	DESIGN AND INTEGRATE PLANT SELECTION CRITERIA, GENERATOR SIZING, PARALLEL OPERATION, AND GRID MANAGEMENT, WHILE ADDRESSING ECONOMIC CONSIDERATIONS AND MAJOR ELECTRICAL
		CO-1	DISCUSS THE NEED OF RAECTIVE POWER CORRECTION AND VOLTAGE DROP COMPENSATION AND IDENTIFY THE BEST METHODS FOR POWER FACTOR IMPROVEMENT AND VOLTAGE CONTROL.
VII	POWER	CO-2	DEFINE POWER SYSTEM STABILITY WITH ITS APPLIACATIONS AND PROBLEM
	SYSTEM OPERATION AND CONTROL	CO-3	EVALUATE THE MATHEMATICAL MODELS OF THE SPEED GOVERNING SYSTEMS, TURBINE AND EXCITATION SYSTEM
	(BTEEC70 2)	CO-4	DISCRIBE SINGLE AREA LOAD FREQUENCY CONTROL AND TWO AREA LOAD FREQUENCY CONTROL.
		CO-5	DISCUSS THE ECONOMIC OPERATION OF POWER SYSTEM AND IMPORTANCE
		CO-1	ILLUSTRATE THE IMPORTANT CONCEPT OF HIGH VOLTAGE

		CO-2	EXPLAIN THE CONDUCTION AND BREAKDOWN GASES
VII	HIGH VOLTAGE ENGINEERING (BTEEC701)	CO-3	EXPLAIN THE CONDUCTION AND BREAKDOWN IN LIQUID AND SOLID DIELECTRIC.
		CO-4	DESCRIBE THE PHENOMENON OF OVER-VOLTAGE AND CHOOSE APPROPRIATE INSULATION COORDINATION AND EQUIPMENT INSULATION LEVEL.
		CO-5	DETERMINE METHODS FOR GENERATION AND MEASUREMENT OF HIGH VOLTAGES AND CURRENTS (BOTH AC AND DC)
		CO-6	REVIEW THE PERSPECTIVES LAYOUT OF HIGH VOLTAGE LABORATORY & TESTING FACILITIES.
	BIO MEDICAL INSTRUMENT ATION	CO-1	TO RECALL THE PHYSIOLOGY OF BIOMEDICAL SYSTEM
VII	(BTEEOE704)	CO-2	TO DESCRIBE MEASURE BIOMEDICAL AND PHYSIOLOGICAL INFORMATION
	-		TO RELATE THE APPLICATION OF ELECTRONICS IN
		CO-3	DIAGNOSTICS AND THERAPEUTIC AREA
	_	CO-4	EXPLAIN HUMAN BODY PARAMETER MEASUREMENT SETUPS
		CO-5	TO EVALUATE THE BASIC CONCEPTS OF FORENSIC TECHNIQUES
		CO-1	UNDERSTAND DIFFERENT ENERGY SOURCES AND IMPORTANCE OF ENERGY CONSERVATION, GLOBAL ARMING AND EFFECTS OF GLOBAL
		CO-2	DIFFERENT EFFORTS FOR ENERGY CONSERVATION , AND MECHANISM FOR REDUCTION OF CARBON EMMISSION
VII	ENERGY AUDIT AND CONSERVATIO	CO-3	ENERGY CONSERVATION OPORTUNITIES IN BIOLER, BIOLER EFFICIENCY CALCULATION
	(BTEEC703)	CO-4	ENERGY CONSERVATION OPORTUNITIES 5N ELECTRICAL APPLIANCES AND SYSTEM

	[CO-5	NETROK ANALYSIS IN MANAGEMENT, CALCULATION
		CO-1	Explain the basic concepts of Conventional, Electric, Hybrid EV and Autonomous Vehicles
		CO-2	Describe different configurations of electric and hybrid electric drive trains
VII	ELECTRICAL AND HYBRID ELECTRICAL VEHICALS	CO-3	Discuss the propulsion unit for electric and hybrid vehicles
	(BTEEOE705)	CO-4	Compare various energy storage and EV charging systems
		CO-5	Select drive systems and various communication protocols for EV
		CO-1	IDENTIFY AND EVALUATE THE ESSENTIAL QUALITIES REQUIRED FOR ENTREPRENEURIAL SUCCESS, INCLUDING RESILIENCE, INNOVATION, AND LEADERSHIP.
VIII	ENETREPRENA URSHIP ESSENTIALS	CO-2	DEVELOP STRATEGIES FOR TEAM MANAGEMENT AND MAINTAINING A POSITIVE TEAM CULTURE IN THE EARLY STAGES.
		CO-3	REVIEW HOW TO ASSESS THE FINANCIAL POSITION OF A COMPANY AT A SPECIFIC POINT IN TIME.
		CO-4	LLUSTRATE ADVANCED INNOVATION STRATEGIES, FOCUSING ON DESIGN-DRIVEN AND SYSTEMS THINKING APPROACHES.
		CO-5	EXPLAIN THE SUPPORT SYSTEMS AVAILABLE TO STARTUPS THROUGH INCUBATION AND ACCELERATION PROGRAMS.

Practical

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL406	Network Theory	CO-1	Use Kirchhoff's current and voltage laws to analyze and solve electrical circuits in a laboratory setting.
			CO-2	Apply the superposition theorem to determine the response of linear circuits with multiple sources.
			CO-3	Determine the Thevenin equivalent circuit for a given complex network to simplify circuit analysis.
			CO-4	Determine the Norton equivalent circuit for a given complex network to simplify circuit analysis.
			CO-5	Apply the Maximum Power Transfer theorem to find the load resistance that maximizes power delivery in a circuit.
			CO-6	Use the Reciprocity theorem to validate circuit properties and relationships in different configurations.
			CO-7	Analyze the resonance frequency and impedance

		characteristics of an RLC series circuit.
	CO-8	Analyze the resonance behavior and impedance characteristics of a parallel RLC circuit.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
VI	(BTEEC602)	ELECTRICAL MACHINE DESIGN	CO-1	TO RECALL THE CONCEPT AND ABILITY TO ANALYZE THE MAGNETIC MATERIALS AND MAGNETIC CIRCUITS IN ELECTRICAL MACHINES
			CO2	TO IDENTIFY AND DESIGN THE DIFFERENT TYPES OF WINDING
			CO-3	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR STATOR
			CO-4	TO DISTINGUISH THE CHARACTERISTICS AND APPLICATION OF INDUCTION MOTOR ROTOR
			CO-5	TO ASSESS THE KNOWLEDGE OF FUNDAMENTALS, CONSTRUCTION DETAILS AND CLASSIFICATION OF HEATING , COOLING, VENTILATION

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL407	Power system	CO-1	Explain various aspects of design considerations of different types of power plant.
			CO-2	Describe various insulators & conductors with various components used in transmission and distribution system.
			CO-3	Discover various equipment's used in substation.
			CO-4	Student can determine different parameter used in cable.
			CO-5	Student can do survey on industrial visit and write report in details.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
III	BTEEL307	Electrical Electronics and Measurement	CO-1	Use AC bridges for the measurement of inductance, capacitance and frequency.
			CO-2	Identify different measuring instruments for the measurement of various electrical and non-electrical parameters.
			CO-3	use of various transducers for the measurement of physical quantities like temperature, pressure, distance and displacement.

CO-4	Demonstrate the characteristics of Solar panel and earth resistance.
CO-5	Analyze the errors present in measuring instruments and calibrate them.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL408	Electrical Machine II	CO-1	Explain the different Starting and speed control methods of 3- Phase Induction Motor.
			CO-2	Analyze the performance of 3-Phase Induction Motor Perform by conducting no-load and blocked rotor test
			CO-3	Formulate equivalent circuit parameters of an alternator and also its voltage regulation by different methods
			CO-4	Evaluate the synchronization of an alternator to infinite bus and control load sharing
			CO-5	Analyze the behavior of Synchronous motor at different loading conditions using V and inverted V curve.

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
IV	BTEEL408	Electrical Machine II	CO-1	Students will be able to able to identify fault current under the

	symmetrical and unsymmetrical faults conditions
CO-2	Students will be able to analyse power system studies by MATLAB
CO-3	Students will be able to develop the Y-Bus Matrix

SEMESTER	SUBJECT CODE	NAME OF THE SUBJECTS	СО	COURSE OUTCOMES
V BTEEL606	BTEEL606	SWITCHGEAR AND PROTECTION LAB	CO-1	Verify and analyze the characteristics of static overcurrent and overvoltage relays, including IDMT and reverse power relays.
			CO-2	Demonstrate the operational principles of differential protection schemes for transformers, including their schematic diagrams.
			CO-3	Demonstrate the operational principles of differential protection schemes for alternators, including their schematic diagrams.
			CO-4	Identify and describe the components and specifications of various types of circuit breakers through practical demonstrations and models.